- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liang, Yifei (2)
-
Sun, Hao (2)
-
Cao, Wei (1)
-
Choi, Wonmin (1)
-
Clemons, Tristan D. (1)
-
Emon, Omar Faruk (1)
-
Gianneschi, Nathan C. (1)
-
Hu, Ziying (1)
-
Ibrahim, Tarek (1)
-
Nalley, Daniel (1)
-
Ritacco, Angelo (1)
-
Scheutz, Georg M. (1)
-
Stupp, Samuel I. (1)
-
Sumerlin, Brent S. (1)
-
Thompson, Matthew P. (1)
-
Vratsanos, Maria (1)
-
Zang, Nanzhi (1)
-
Zhou, Xuhao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The current insufficient recycling of commodity polymer waste has resulted in pressing environmental and human health issues in our modern society. In the quest for next-generation polymer materials, chemists have recently shifted their attention to the design of chemically recyclable polymers that can undergo depolymerization to regenerate monomers under mild conditions. During the past decade, ring-closing metathesis reactions have been demonstrated to be a robust approach for the depolymerization of polyolefins, producing low-strain cyclic alkene products which can be repolymerized back to new batches of polymers. In this review, we aim to highlight the recent advances in chemical recycling of polyolefins enabled by ring-closing metathesis depolymerization (RCMD). A library of depolymerizable polyolefins will be covered based on the ring size of their monomers or depolymerization products, including five-membered, six-membered, eight-membered, and macrocyclic rings. Moreover, current limitations, potential applications, and future opportunities of the RCMD approach will be discussed. It is clear from recent research in this field that RCMD represents a powerful strategy towards closed-loop chemical recycling of novel polyolefin materials.more » « less
-
Sun, Hao; Cao, Wei; Zang, Nanzhi; Clemons, Tristan D.; Scheutz, Georg M.; Hu, Ziying; Thompson, Matthew P.; Liang, Yifei; Vratsanos, Maria; Zhou, Xuhao; et al (, Angewandte Chemie International Edition)Abstract Herein, we report the photoinitiated polymerization‐induced self‐assembly (photo‐PISA) of spherical micelles consisting of proapoptotic peptide–polymer amphiphiles. The one‐pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL−1) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide‐functionalized nanoparticles imbued the proapoptotic “KLA” peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo‐PISA in the large‐scale synthesis of functional, proteolytically resistant peptide–polymer conjugates for intracellular delivery.more » « less
An official website of the United States government
